By Topic

To avoid unmoving and moving obstacles using MKBC algorithm Path planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kulic, R. ; Fac. of Comput. Sci., Megatrend Univ. in Belgrade, Belgrade ; Vukic, Z.

The problem of path planning for the autonomous vehicle in environment with moving and stationary obstacles is considered. An algorithm based on modified Kohonen rule and behavioural cloning (MKBC) is developed. The MKBC algorithm, as improvement of RBF neural network, uses the training values as weighting values, rather then values from the previous time instance. This enables an intelligent system to learn from examples (operator's demonstrations) to control a robot vehicle, in this case, to avoid stationary or moving obstacle. Important characteristic of the MKBC algorithm is polynomial complexity, while most other path planning algorithms are exponential. Experiments determined that it is robust to parameter change and suitable for real time application.

Published in:

Mechatronics, 2009. ICM 2009. IEEE International Conference on

Date of Conference:

14-17 April 2009