By Topic

Novel Epitaxial Nanostructures for the Improvement of InGaN LEDs Efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taeil Jung ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Lee, L.K. ; Ku, P.C.

We demonstrated that the efficiency of an InGaN LED can be improved by using a novel epitaxial nanostructure, namely, the nanostructured semipolar (NSSP) gallium nitride (GaN). The NSSP GaN template was fabricated on a c-plane GaN surface using a standard GaN metal-organic chemical vapor deposition tool on c-plane sapphire substrates. We showed that the surface of NSSP GaN consisted of two semipolar orientations: (10-11) and (11-22). InGaN/GaN multiple quantum wells (MQWs) fabricated on NSSP GaN exhibited negligible quantum-confined Stark effect (QCSE) and a 30% improvement in internal quantum efficiency as compared to planar c-plane InGaN/GaN MQWs. Using time-resolved photoluminescence (PL), a considerable improvement in radiative recombination lifetime was also observed. We fabricated and characterized semipolar InGaN LEDs on NSSP GaN that emitted at 543 nm and showed negligible QCSE. The NSSP GaN structure can also be applied to improve the photon extraction efficiency of InGaN-based LEDs. The surface texturing was performed in situ together with the LED epitaxy without additional ex situ etching processes. The in situ surface texturing improved the PL intensity by a factor of two. An electrical injection LED structure employing in situ surface texturing was also demonstrated.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 4 )