By Topic

The Importance of Recombination via Excited States in InAs/GaAs \hbox {1.3};\mu m Quantum-Dot Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

The temperature dependence of the radiative and nonradiative components of the threshold current density of 1.3 mum InAs/GaAs quantum-dot lasers have been analyzed both experimentally and theoretically. It is shown that the weak temperature variation measured for the radiative current density arises because the optical matrix element for excited state transitions is significantly smaller than for the ground state transition. In contrast, nonradiative Auger recombination can have a similar probability for transitions involving excited states as for those involving ground state carriers. The sharp increase in the threshold current density at high temperatures follows the temperature variation of the cubed threshold carrier density confirming that Auger recombination is the dominant recombination mechanism in these devices at room temperature.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 3 )