By Topic

An Effective Method for Evaluating the Accuracy of Power Hardware-in-the-Loop Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Ren ; GE Global Res. Center, Niskayuna, NY, USA ; Michael Steurer ; Thomas L. Baldwin

Power hardware-in-the-loop (PHIL) simulations need to be accurate to truly reflect the behavior of the systems under test. However, a PHIL simulation may result in errors or even instability due to imperfections (e.g., time delay, noise injection, phase lag, and limited bandwidth) in the power interface, particularly in high-power applications. Additionally, it is usually difficult to determine the accuracy of a simulation because there is no reference available for people to know the ldquoshould-berdquo system responses in advance. Therefore, a method is demanded to predict the accuracy of PHIL simulations. In this paper, an effective method for evaluating the PHIL accuracy is proposed. This method provides a means to justify the result of a PHIL simulation analytically and quantitatively instead of empirically. While the method is based on linear system analysis, it is shown to be also applicable for nonlinear PHIL systems.

Published in:

IEEE Transactions on Industry Applications  (Volume:45 ,  Issue: 4 )