Cart (Loading....) | Create Account
Close category search window
 

Unsupervised Bayesian Decomposition of Multiunit EMG Recordings Using Tabu Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Di Ge ; Centre Nat. de la Rech. Sci., Ecole Centrale de Nantes, Nantes, France ; Le Carpentier, E. ; Farina, D.

Intramuscular electromyography (EMG) signals are usually decomposed with semiautomatic procedures that involve the interaction with an expert operator. In this paper, a Bayesian statistical model and a maximum a posteriori (MAP) estimator are used to solve the problem of multiunit EMG decomposition in a fully automatic way. The MAP estimation exploits both the likelihood of the reconstructed EMG signal and some physiological constraints, such as the discharge pattern regularity and the refractory period of muscle fibers, as prior information integrated in a Bayesian framework. A Tabu search is proposed to efficiently tackle the nondeterministic polynomial-time-hard problem of optimization w.r.t the motor unit discharge patterns. The method is fully automatic and was tested on simulated and experimental EMG signals. Compared with the semiautomatic decomposition performed by an expert operator, the proposed method resulted in an accuracy of 90.0% ?? 3.8% when decomposing single-channel intramuscular EMG signals recorded from the abductor digiti minimi muscle at contraction forces of 5% and 10% of the maximal force. The method can also be applied to the automatic identification and classification of spikes from other neural recordings.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.