Cart (Loading....) | Create Account
Close category search window

Compact dielectric resonator antenna for microwave breast cancer detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, W. ; Dept. of Electr. Eng., Univ. of Mississippi, Oxford, MS ; Kishk, A.A.

A compact stair-shaped dielectric resonator antenna (DRA) is designed and fabricated for microwave breast cancer detection. A quarter-wavelength choke was incorporated to reduce the finite ground plane size. A more than 40% return loss of 10 dB centred at 6.5 GHz is achieved with a 50 Omega coaxial port. Parametric studies are carried out to provide practical insights into sensor design. The design is performed numerically and confirmed experimentally. A simple model for the tissue is considered and the interaction of the sensor with the tissue is investigated. Good matching is retained without adding any matching medium or lumped loads when the sensor is in contact with the tissue. A two-element sensor array is investigated numerically. A dipole antenna and a circular ultra-wideband dipole antenna are compared with the stair-shaped DRA with a choked ground plane. Preliminary results are obtained for the cases with different tumour locations. The DRA type of sensor reveals good potential for frequency-domain detection.

Published in:

Microwaves, Antennas & Propagation, IET  (Volume:3 ,  Issue: 4 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.