Cart (Loading....) | Create Account
Close category search window

Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sathaiya, D.Mahaveer ; Department of Electrical Engineering, Indian Institute of Technology, Madras 600 036, India ; Karmalkar, S.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We propose two models of electron tunneling from metal to a semiconductor via traps. In addition to the electrons below the metal Fermi level, the models also include the thermally activated electrons above the Fermi level. The first model is called generalized thermionic trap-assisted tunneling (GTTT), which considers tunneling through both triangular and trapezoidal barriers present in metal insulator semiconductor (MIS) structures. The second model is called thermionic trap-assisted tunneling (TTT), which considers tunneling through triangular barriers present in modern Schottky junctions. The GTTT model is shown to predict the low field leakage currents in MIS structures with nitrided oxide as insulator, and the TTT model is shown to predict the reverse gate leakage in AlGaN/GaN high electron mobility transistors.

Published in:

Journal of Applied Physics  (Volume:99 ,  Issue: 9 )

Date of Publication:

May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.