Cart (Loading....) | Create Account
Close category search window

Thermal budget of superconducting digital circuits at subkelvin temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Savin, A.M. ; Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT, Espoo, Finland ; Pekola, J.P. ; Averin, D.V. ; Semenov, V.K.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Superconducting single-flux-quantum (SFQ) circuits have so far been developed and optimized for operation at or above helium temperatures. The SFQ approach, however, should also provide potentially viable and scalable control and readout circuits for Josephson-junction qubits and other applications with much lower, millikelvin, operating temperatures. This paper analyzes the overheating problem which becomes important in this temperature range. We suggest a thermal model of the SFQ circuits at subkelvin temperatures and present experimental results on overheating of electrons and silicon substrate which support this model. The model establishes quantitative limitations on the dissipated power both for “local” electron overheating in resistors and “global” overheating due to ballistic phonon propagation along the substrate. Possible changes in the thermal design of SFQ circuits in view of the overheating problem are also discussed.

Published in:

Journal of Applied Physics  (Volume:99 ,  Issue: 8 )

Date of Publication:

Apr 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.