By Topic

High sensitivity and nonlinearity of carbon nanotube charge-based sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo, Jing ; Department of ECE, University of Florida, Gainesville, Florida 32611 ; Kan, E.C. ; Ganguly, Udayan ; Zhang, Yuegang

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A self-consistent atomistic simulation method is established to investigate carbon nanotubes (CNTs) as the charge sensing channels in nonvolatile memory and sensor applications. The theoretical simulation agrees with the experimental results, demonstrating that the sensor can achieve a high sensitivity down to a single electron charge at room temperature. The electrical response of the CNT charge sensor strongly depends on the position of discrete sensing charges even under low drain biases due to the near ballistic transport and quantum interference in a submicron meter CNT channel. This result differs from those for conventional complementary metal-oxide semiconductor charge-based sensors, in which the carrier transport is diffusive and the electrical response is expected to be insensitive to the position variation of the sensing charges. The high sensitivity and nonlinearity of CNT charge-based sensors are important features that need to be considered in the design of CNT memories and sensors.

Published in:

Journal of Applied Physics  (Volume:99 ,  Issue: 8 )