Cart (Loading....) | Create Account
Close category search window
 

Mechanism of Hf-silicide formation at interface between poly-Si electrode and HfO2/Si gate stacks studied by photoemission and x-ray absorption spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Takahashi, H. ; Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ; Okabayashi, J. ; Toyoda, S. ; Kumigashira, H.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2206610 

We have investigated the mechanism for silicidation by chemical reactions at polycrystalline-Si (poly-Si)/HfO2/Si gate stacks by annealing in ultrahigh vacuum using photoemission spectroscopy and x-ray absorption spectroscopy. Si 2p, Hf 4f, and O 1s high-resolution photoemission spectra have revealed that a Hf-silicide formation starts at as low temperature as 700 °C and that a Hf silicate is also formed at the interface between poly-Si electrodes and HfO2. The metallic Hf silicide is formed at the interface between HfO2 and Si substrates, which changes the band offsets on Si substrates. We have found that poly-Si electrodes promote the interfacial reaction between HfO2 and Si substrates, while the crystallization in a HfO2 layer is independent of the silicide formation. The silicidation mechanism based on photoemission spectra is also confirmed from the thermodynamical analysis considering the Gibbs’ free energy.

Published in:

Journal of Applied Physics  (Volume:99 ,  Issue: 11 )

Date of Publication:

Jun 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.