By Topic

Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abadias, G. ; Laboratoire de Métallurgie Physique, UMR CNRS 6630, Université de Poitiers, SP2MI, Téléport 2, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France ; Tse, Y.Y. ; Guerin, Ph. ; Pelosin, V.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2197287 

To clarify the underlying mechanisms that cause the preferred orientation in TiN films, we investigated the evolution with the thickness of the texture, surface morphology, and residual stress in TiN thin films deposited by dual ion beam sputtering. The films, with thickness h ranging from 50 to 300 nm, were grown on oxidized Si substrates using a primary Ar ion beam accelerated under 1.2 kV and different voltages Va of the (Ar+N2) assistance beam: 25, 50, and 150 V. The influence of temperature was also investigated by varying the substrate temperature Ts (25–300 °C) during growth or by performing a postdeposition annealing. X-ray diffraction (XRD) as well as transmission electron microscopy were used to study the microstructure and changes of texture with thickness h, while x-ray reflectivity and atomic force microscopy measurements were performed to determine the surface roughness. Residual stresses were measured by XRD and analyzed using a triaxial stress model. The crystallite group method was used for a strain determination of crystallites having different fiber axis directions, i.e., when a mixed texture exists. The surface roughness is found to increase with Va and Ts due to the resputtering effect of the film surface. XRD reveals that for a small thickness (h∼50 nm) the TiN films exhibit a strong (002) texture independent of Va. For a larger thickness (100≪h≪300 nm), the development of a (111) prefe- rred orientation is observed together with a grain size increase, except at Ts=300 °C, where the predominant texture remains (002). A minor (220) texture is also found, but its contribution strongly decreases with Va and Ts. The residual stresses are highly compressive, ranging from -8 to -5 GPa, depending on the deposition conditions. When a mixed texture exists, the analysis reveals that (111)-oriented grains sustain stresses that are about 20% more compressive than those sustained by (002)-oriented grains. The present results suggest that the change in the preferred orientation from (002) to (111) is not correlated with a strain energy minimization or with a systematic increase in surface morphology. Rather, kinetically driven mechanisms occurring during growth and linked to anisotropies in surface diffusivities, adatom mobilities, and collisional cascades effects are likely to control the texture development in TiN thin films produced with energetic ionic species. This interpretation is supported by in situ temperature XRD measurements.

Published in:

Journal of Applied Physics  (Volume:99 ,  Issue: 11 )