By Topic

Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mieno, T. ; Department of Physics, Shizuoka University, Ooya, Suruga-ku, Shizuoka 422-8529, Japan ; Takeguchi, M.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2194122 

Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition.

Published in:

Journal of Applied Physics  (Volume:99 ,  Issue: 10 )