Cart (Loading....) | Create Account
Close category search window
 

Pulsed laser annealing of Be-implanted GaN

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, H.T. ; Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore ; Tan, L.S. ; Chor, E.F.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2120893 

Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

Published in:

Journal of Applied Physics  (Volume:98 ,  Issue: 9 )

Date of Publication:

Nov 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.