Cart (Loading....) | Create Account
Close category search window

Modeling saturated and unsaturated ferroelectric hysteresis loops: An analytical approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsang, C.H. ; Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China ; Wong, C.K. ; Shin, F.G.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

In ferroelectric materials, hysteresis behavior is very difficult to model due to its nonlinear and history-dependent characteristics. Among approaches that are able to describe unsaturated loops, many of them are either very complicated (numerical procedures must be employed) or the resulting loops contain some undesirable or defective features. In this work, a simple hysteresis model based on a special construction of the Preisach function is proposed. Explicit expressions for the polarization-field (P-E) responses under increasing and decreasing applied fields have been derived. The saturated and unsaturated P-E loops can be conveniently calculated by piecing together such responses. The technique is widely applicable to the modeling of ferroelectric hysteresis behavior of ceramics and polymers. As examples we study the applied field dependence of dielectric permittivity of a ferroelectric film and the remanent polarization of ferroelectric composites after ac poling. We find that the model predictions agree well with the experimental results.

Published in:

Journal of Applied Physics  (Volume:98 ,  Issue: 8 )

Date of Publication:

Oct 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.