By Topic

Modeling of anomalous hysteresis behavior of compositionally graded ferroelectric films at low fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wong, C.K. ; Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China ; Shin, F.G.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1985970 

We study the hysteresis behavior of compositionally graded ferroelectric films by theoretical simulations. Anomalous vertical (polarization) shift behavior of hysteresis loops measured by a Sawyer-Tower circuit at low/medium applied fields is investigated. The anomalous ferroelectric response is discussed by the use of a multilayer model to account for the variation of properties across the film thickness. Electrical conductivities of the ferroelectric layers have been taken into account and time-dependent space-charge-limited conduction has been adopted. The effects of charge mobility and the amplitude of applied field on the D-E loop shift were examined. Theoretical calculations are discussed in relation to the experimental data from previous works.

Published in:

Journal of Applied Physics  (Volume:98 ,  Issue: 2 )