By Topic

Simple cubic three-dimensional photonic crystals based on macroporous silicon and anisotropic posttreatment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matthias, Sven ; Max Planck Institute of Microstructure Physics,b) Weinberg 2, Halle 06120, Germany ; Muller, Frank ; Gosele, Ulrich

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1993752 

Three-dimensional structures for photonic crystal applications have been fabricated up to now either by pure bottom-up approaches such as colloidal self-assembly, by pure top-down approaches using very large scale integration technology, or by interference lithography. Here we evaluate a concept enabling large photonic band gaps in simple cubic structures, the manufacturing of which is based on photoelectrochemical etching of strongly modulated macroporous silicon. A subsequent anisotropic etching of the porous structure, which exploits the crystallographic nature of the substrate used, converts the former circular cross section of the pores into a squared one. We theoretically study the dispersion behavior of photonic crystals being fabricated by this developed technique. The band-structure calculations are compiled with respect to the relative pore arrangement and the dielectric volume fraction. We present experimentally realized structures and characterize the photonic crystal optically. The reflectance measurements are in good agreement with corresponding band-structure calculations. Moreover, the introduced process extends the variety of designing and sculpturing three-dimensional microstructures to meet the requirements of a multitude of micro- and nanotechnological applications.

Published in:

Journal of Applied Physics  (Volume:98 ,  Issue: 2 )