By Topic

The formation mechanism of aluminum oxide tunnel barriers: Three-dimensional atom probe analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2149188 

Magnetic tunnel junctions have applications in a range of spin-electronic devices. The functional properties of such devices are critically dependant on the nanoscale morphology of the insulating barrier (usually only a few atomic layers thick) that separates two ferromagnetic layers. Here we report atomic-resolution three-dimensional visualization of magnetic tunnel junctions with an aluminum oxide barrier, using three-dimensional atom probe analysis and cross-sectional high resolution electron microscopy. Our results on barriers with a range of degrees of oxidation have enabled a mechanism for the oxidation to be proposed. Low oxidation times result in discrete oxide islands and further oxidation leads to a more continuous, but nonstoichiometric, barrier. Post-deposition annealing leads to an increase in the barrier area and near stoichiometric chemistry with evidence that oxidation proceeds along the top of grain boundaries in the underlying CoFe. Our three-dimensional visualization enables us to show that even perforated barriers (formed at shorter oxidation times) can have reasonable transport properties.

Published in:

Journal of Applied Physics  (Volume:98 ,  Issue: 12 )