By Topic

Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Green, Christopher P. ; Department of Mathematics and Statistics, University of Melbourne, 3010, Victoria, Australia ; Sader, John E.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Theoretical models for the frequency response of a cantilever beam immersed in a viscous fluid commonly assume that the fluid is unbounded. Experimental measurements show, however, that proximity to a surface can significantly affect the frequency response of a cantilever beam. In this article, we rigorously calculate the effect of a nearby surface on the frequency response of a cantilever beam immersed in a viscous fluid, and present a general theoretical model. Due to its practical relevance to applications of the atomic force microscope and microelectromechanical systems, detailed results are presented for cantilever beams with rectangular geometries executing flexural and torsional oscillations. It is found that dissipative loading in the fluid is primarily responsible for the observed variation in the frequency response, whereas inertial loading exerts a relatively weak influence.

Published in:

Journal of Applied Physics  (Volume:98 ,  Issue: 11 )