Cart (Loading....) | Create Account
Close category search window

Gate bias stress effects due to polymer gate dielectrics in organic thin-film transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nga Ng, Tse ; Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, USA ; Daniel, Jurgen H. ; Sambandan, S. ; Arias, Ana-Claudia
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The operational stability of organic thin-film transistors (OTFTs) comprising bilayer polymer dielectric of poly(methylsilsesquioxane) (pMSSQ) and either the epoxy resin SU-8 or poly(4-vinyl phenol) was examined. Although not in direct contact with the semiconductor materials, the bottom dielectric layer did affect OTFT stability through water ion movement or charge injection inside the bottom dielectrics. In the comparison between our best polymer dielectric pMSSQ/SU-8 to the silicon oxide dielectric, the result emphasized that, at equal initial charge concentration, polymer dielectrics did not alleviate threshold-voltage shift but did maintain more stable current due to the lower gate capacitance than silicon oxide.

Published in:

Journal of Applied Physics  (Volume:103 ,  Issue: 4 )

Date of Publication:

Feb 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.