By Topic

Practical reliable Bayesian recognition of 2D and 3D objects using implicit polynomials and algebraic invariants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Subrahmonia, J. ; Handwriting Algorithms Group, IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Cooper, D.B. ; Keren, D.

We treat the use of more complex higher degree polynomial curves and surfaces of degree higher than 2, which have many desirable properties for object recognition and position estimation, and attack the instability problem arising in their use with partial and noisy data. The scenario discussed in this paper is one where we have a set of objects that are modeled as implicit polynomial functions, or a set of representations of classes of objects with each object in a class modeled as an implicit polynomial function, stored in the database. Then, given partial data from one of the objects, we want to recognize the object (or the object class) or collect more data in order to get better parameter estimates for more reliable recognition. Two problems arising in this scenario are discussed: 1) the problem of recognizing these polynomials by comparing them in terms of their coefficients; and 2) the problem of where to collect data so as to improve the parameter estimates as quickly as possible. We use an asymptotic Bayesian approximation for solving the two problems. The intrinsic dimensionality of polynomials and the use of the Mahalanobis distance are discussed

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 5 )