By Topic

An efficient optimal reconfiguration algorithm for FDDI-based networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Kamat ; IBM Thomas J. Watson Res. Center, Hawthorne, NY, USA ; Wei Zhao

We study a new network architecture based on standard FDDI networks. This network, called FDDI-based reconfigurable network (FBRN), is constructed using multiple FDDI token rings and has the ability to reconfigure itself in the event of extensive damage to the network. Thus, an FBRN has the potential to provide high available bandwidth even in the presence of numerous faults. Realization of this potential depends crucially on a reconfiguration algorithm that guides the reconfiguration process. We design and analyze a reconfiguration algorithm for FBRNs. Our algorithm is optimal in the sense that it always produces a configuration that results in the maximum available bandwidth for a given fault pattern. This algorithm has a polynomial time complexity. We also show that the available bandwidth of an FBRN is dramatically improved with our reconfiguration algorithm

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:7 ,  Issue: 4 )