By Topic

Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range. II. Multiconductor configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D'Amore, M. ; Dipartimento di Energia Elettrica, Rome Univ., Italy ; Sarto, M.S.

For pt. I see ibid., vol.38, no.2, p.127, 1996. The simulation model of a multiconductor dissipative line above a lossy ground, based on the exact formulation of the Maxwell equations, is proposed for a wide frequency range. The procedure is an extension of the analysis of single conductor configurations. The exact expression of the matrix modal equation of the line is first proposed, assuming that in the system there are as many dominant discrete modes of propagation as there are conductors. New expressions of the distributed series-impedance and shunt-admittance matrices are proposed, with reference to the definition of the wire-to-ground voltage. Moreover, an easy-to-implement simulation model is proposed for use in computer codes, based on the logarithmic approximation of the Sommerfeld integrals and Bessel functions. Applications are carried out in order to compare the results of the proposed procedure and of the Carson (1926) theory, with reference to a three-conductor line above a lossy ground

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:38 ,  Issue: 2 )