Cart (Loading....) | Create Account
Close category search window

Pulsed recording of anisotropy and holographic polarization gratings in azo-polymethacrylates with different molecular architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Forcen, Patricia ; Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain ; Oriol, Luis ; Sanchez, Carlos ; Alcala, Rafael
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Recording of anisotropy and holographic polarization gratings using 532 nm, 4 ns light pulses has been carried out in thin films of polymers with the same azobenzene content (20 wt %) and different molecular architectures. Random and block copolymers comprising azobenzene and methylmethacrylate (MMA) moieties as well as statistical terpolymers with azobenzene, biphenyl, and MMA units have been compared in terms of recording sensitivity and stability upon pulsed excitation. Photoinduced anisotropy just after the pulse was significantly higher in the case of the block copolymers than in the two statistical copolymers. The stability of the recorded anisotropy has also been studied. While a stationary value of the photoinduced anisotropy (approximately 50% of the initial photoinduced value) is reached for the block copolymer, photoinduced anisotropy almost vanished after a few hours in the statistical copolymers. Polarization holographic gratings have been registered using two orthogonally circularly polarized light beams. The results are qualitatively similar to those of photoinduced anisotropy, that is, stability of the registered grating and larger values of diffraction efficiency for the block copolymer as compared with the random copolymers. The recording of holographic gratings with submicron period in films several microns thick, showing both polarization and angular selectivity, has also been demonstrated. Block copolymers showed a lamellar block nanosegregated morphology. The interaction among azo chromophores within the nanosegregated azo blocks seems to be the reason for the stability and the photoresponse enhancement in the block copolymer as compared with the statistical ones.

Published in:

Journal of Applied Physics  (Volume:103 ,  Issue: 12 )

Date of Publication:

Jun 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.