Cart (Loading....) | Create Account
Close category search window

Computer simulation and experimental study of elastic properties of amorphous Cu-Zr alloys

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mendelev, M.I. ; Materials and Engineering Physics Program, Ames Laboratory, Ames, Iowa 50011, USA ; Rehbein, D.K. ; Ott, R.T. ; Kramer, M.J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Molecular-dynamics simulations were performed to determine the elastic constants of CuxZr100-x (33.3≤x≤64.5) metallic glasses at room temperature. The accuracy of the interatomic potentials used to obtain the model glass structures was tested by comparing to the total structure factors obtained from high-energy synchrotron x-ray diffraction and, more importantly, to acoustic velocities measured from melt spun ribbons. Both the simulated and measured acoustic velocities increased at comparable rates with increasing Cu concentration, but the former underestimated the latter by about 10%. Young’s moduli of the simulated models were determined by combining the ultrasonic data with densities that were obtained from simulations. In addition, the compositional dependence of Poisson’s ratio, shear modulus, and bulk modulus for this series of simulated metallic glasses was determined. Examination of partial-pair correlations deduced from simulated glass structures shows a correlation between higher bulk moduli in Cu-rich compositions and concomitant changes in Zr-Zr nearest neighbors, which exhibit a stronger sensitivity to an imposed hydrostatic stress than do Cu-Cu or Cu-Zr nearest-neighbor distances.

Published in:

Journal of Applied Physics  (Volume:102 ,  Issue: 9 )

Date of Publication:

Nov 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.