By Topic

Contact resistance study of noble metals and alloy films using a scanning probe microscope test station

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chen, L. ; Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA ; Lee, H. ; Guo, Z.J. ; McGruer, N.E.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2785951 

The proper selection of electrical contact materials is one of the critical steps in designing a metal contact microelectromechanical system (MEMS) switch. Ideally, the contact should have both very low contact resistance and high wear resistance. Unfortunately this combination cannot be easily achieved with the contact materials currently used in macroswitches because the available contact force in microswitches is generally insufficient (less than 1 mN) to break through nonconductive surface layers. As a step in the materials selection process, three noble metals, platinum (Pt), rhodium (Rh), ruthenium (Ru), and their alloys with gold (Au) were deposited as thin films on silicon (Si) substrates. The contact resistances of these materials and their evolution with cycling were measured using a specially developed scanning probe microscope test station. These results were then compared to measurements of material hardness and resistivity. The initial contact resistances of the noble metals alloyed with Au are roughly proportional to their resistivities. Measurements of contact resistance during cycling of different metal films were made under a contact force of 200–250 μN in a room air environment. It was found that the contact resistance increases with cycling for alloy films with a low concentration of gold due to the buildup of contamination on the contact. However, for alloy films with a high gold content, the contact resistance increase due to contamination is insignificant up to 108 cycles. These observations suggest that Rh, Ru, and Pt and their gold alloys of low gold content are prone to contamination failure as contact materials in MEMS switches.

Published in:

Journal of Applied Physics  (Volume:102 ,  Issue: 7 )