By Topic

Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang, Gengchiau ; Electrical and Computer Engineering, National University of Singapore, Singapore 117576 ; Neophytou, Neophytos ; Lundstrom, M.S. ; Nikonov, D.E.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A real-space quantum transport simulator for graphene nanoribbon (GNR) metal-oxide-semiconductor field-effect transistors (MOSFETs) has been developed and used to examine the ballistic performance of GNR MOSFETs. This study focuses on the impact of quantum effects on these devices and on the effect of different type of contacts. We found that two-dimensional (2D) semi-infinite graphene contacts produce metal-induced-gap states (MIGS) in the GNR channel. These states enhance quantum tunneling, particularly in short channel devices, they cause Fermi level pinning and degrade the device performance in both the ON-state and OFF-state. Devices with infinitely long contacts having the same width as the channel do not indicate MIGS. Even without MIGS quantum tunneling effects such as band-to-band tunneling still play an important role in the device characteristics and dominate the OFF-state current. This is accurately captured in our nonequilibrium Greens’ function quantum simulations. We show that both narrow (1.4 nm width) and wider (1.8 nm width) GNRs with 12.5 nm channel length have the potential to outperform ultrascaled Si devices in terms of drive current capabilities and electrostatic control. Although their subthreshold swings under forward bias are better than in Si transistors, tunneling currents are important and prevent the achievement of the theoretical limit of 60 mV/dec.

Published in:

Journal of Applied Physics  (Volume:102 ,  Issue: 5 )