By Topic

Three-dimensional failure analysis of high power semiconductor laser diodes operated in vacuum

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yeoh, Terence S. ; The Aerospace Corporation, 2350 El Segundo Boulevard, El Segundo, California 90425-4691, USA ; Chaney, John A. ; Leung, Martin S. ; Ives, Neil A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The damaged region of a semiconductor laser diode that failed in a vacuum environment was analyzed using focused ion beam (FIB) serial sectioning, time-of-flight secondary ion mass spectrometry (ToF-SIMS), high resolution transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), energy dispersive x-ray spectroscopy (EDS), and nanodiffraction. The FIB nanotomography models and the TEM cross sections show a damage structure extending deep into the core and originating at the diode/antireflective (AR) coating interface. Nanocrystalline gold was detected at this interface using both TEM diffraction and EDS, and the localization of gold along the core at the diode/AR interface was corroborated using 3D ToF-SIMS. A thinning of the AR coating above the failure site was observed by TEM with a corresponding increase in carbon content on the AR surface detected with EELS. It is suggested that failure proceeded by pyrolysis of adsorbed hydrocarbons on the AR coating, which, in the presence of a high optical flux, contributed to carbothermal reduction of the AR coating. As the optical flux increased, thermal gradients facilitate metal migration, leading to larger gold clusters. These clusters are sites for deep level traps and may promote catalytic reactions.

Published in:

Journal of Applied Physics  (Volume:102 ,  Issue: 12 )