Cart (Loading....) | Create Account
Close category search window

Enhanced field emission from CuO nanowire arrays by in situ laser irradiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhu, Y.W. ; Department of Physics, National University of Singapore, Singapore 117542, Singapore and National University of Singapore Nanoscience & Nanotechnology Initiative, Singapore 117542, Singapore ; Sow, C.H. ; Thong, J.T.L.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Laser irradiation was found to effectively enhance the field emission current of CuO nanowire arrays. The effects of laser intensity, wavelength, emission current, and working vacuum on the enhancement have been investigated in detail. The observed laser induced enhancement in field emission current is attributed to the interplay of two factors, namely, laser induced electron transition to excited states and surface oxygen desorption. Among these factors, the contribution from extra excited electrons, which increases the number of electrons in conduction band of CuO for subsequent tunneling, is dominant. A physical process of the laser induced enhancement is discussed. This work helps to elucidate the mechanisms of electron field emission from narrow band gap nanowires and will be useful for designing future vacuum nanodevices, such as photodetectors or switches, based on field emission of nanowires.

Published in:

Journal of Applied Physics  (Volume:102 ,  Issue: 11 )

Date of Publication:

Dec 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.