Cart (Loading....) | Create Account
Close category search window

Correlated and entangled pairs of single photons from semiconductor quantum dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Akopian, N. ; Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel ; Lindner, N.H. ; Poem, E. ; Berlatzky, Y.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Entangled photon pairs are emitted from a biexciton decay cascade of single quantum dots when spectral filtering is applied. We show this by experimentally measuring the density matrix of the polarization state of the photon pair emitted from a continuously pumped quantum dot. The matrix clearly satisfies the Peres criterion for entanglement. By applying in addition a temporal window, the quantum dot becomes an entangled light source.

Published in:

Journal of Applied Physics  (Volume:101 ,  Issue: 8 )

Date of Publication:

Apr 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.