By Topic

Conformance testing of protocols specified as communicating finite state machines-a guided random walk based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, D. ; AT&T Bell Labs., Holmdel, NJ, USA ; Sabnani, K.K. ; Kristol, D.M. ; Paul, S.

We present a new approach for conformance testing of protocols specified as a collection of communicating finite state machines (FSMs). Our approach uses a guided random walk procedure. This procedure attempts to cover all transitions in the component FSMs. We also introduce the concept of observers that check some aspect of protocol behavior. We present the result of applying our method to two example protocols: full-duplex alternating bit protocol and the ATM-adaptation-layer-convergence protocol. Applying our procedure to the ATM adaptation layer, 99% of component FSMs edges can be covered in a test with 11692 input steps. Previous approaches cannot do conformance test generation for standard protocols (such as asynchronous transfer mode (ATM) adaptation layer) specified as a collection of communicating FSMs

Published in:

Communications, IEEE Transactions on  (Volume:44 ,  Issue: 5 )