Cart (Loading....) | Create Account
Close category search window

The influence of annihilation processes on the threshold current density of organic laser diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gartner, Christian ; Light Technology Institute (LTI), Universität Karlsruhe (TH), Kaiserstraße 12, D-76131 Karlsruhe, Germany ; Karnutsch, Christian ; Lemmer, U. ; Pflumm, C.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We examine the impact of various annihilation processes on the laser threshold current density of a multilayer organic laser diode by numerical simulation. Our self-consistent numerical model treats the dynamics of electrons, holes, and singlet as well as triplet excitons in the framework of a drift-diffusion model. The resulting particle distributions enter into an optical model. In our approach, a three layer waveguide structure is taken into account and the resulting laser rate equations are solved. Various annihilation processes are included as reactions between the different particle species in the device employing typical annihilation rates and material properties of organic semiconductors. By systematically varying the device dimensions and the annihilation rate coefficients, the dominating quenching processes are identified. The threshold current density is found to depend sensitively on the thickness of the emission layer. The influence of annihilation processes on the threshold current density is quantified as a function of the emission layer thickness and various annihilation rate coefficients. Using typical annihilation rate coefficients singlet-polaron annihilation is found to be the dominating quenching process. Maximum annihilation rate coefficients are calculated allowing a threshold current density below 1 kA/cm2. Singlet-triplet annihilation is recognized as another main loss process for singlet excitons. In our model the singlet exciton density is increased by triplet-triplet annihilation whereas it is diminished by singlet-triplet annihilation. The ratio of the rate coefficients for singlet-triplet and triplet-triplet annihilations is identified to be critical for the total number of singlet excitons being quenched by triplet excitons.

Published in:

Journal of Applied Physics  (Volume:101 ,  Issue: 2 )

Date of Publication:

Jan 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.