Cart (Loading....) | Create Account
Close category search window

Microwave enhanced ion-cut silicon layer transfer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Thompson, D.C. ; School of Materials, Arizona State University, Tempe, Arizona 85287 ; Alford, T.L. ; Mayer, J.W. ; Hochbauer, T.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Microwave heating has been used to decrease the time required for exfoliation of thin single-crystalline silicon layers onto insulator substrates using ion-cut processing. Samples exfoliated in a 2.45 GHz, 1300 W cavity applicator microwave system saw a decrease in incubation times as compared to conventional anneal processes. Rutherford backscattering spectrometry, cross sectional scanning electron microscopy, cross sectional transmission electron microscopy, and selective aperture electron diffraction were used to determine the transferred layer thickness and crystalline quality. The surface quality was determined by atomic force microscopy. Hall measurements were used to determine electrical properties as a function of radiation repair anneal times. Results of physical and electrical characterizations demonstrate that the end products of microwave enhanced ion-cut processing do not appreciably differ from those using more traditional means of exfoliation.

Published in:

Journal of Applied Physics  (Volume:101 ,  Issue: 11 )

Date of Publication:

Jun 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.