By Topic

A study of phase noise in CMOS oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Razavi, B. ; AT&T Bell Labs., Holmdel, NJ, USA

This paper presents a study of phase noise in two inductorless CMOS oscillators. First-order analysis of a linear oscillatory system leads to a noise shaping function and a new definition of Q. A linear model of CMOS ring oscillators is used to calculate their phase noise, and three phase noise phenomena, namely, additive noise, high-frequency multiplicative noise, and low-frequency multiplicative noise, are identified and formulated. Based on the same concepts, a CMOS relaxation oscillator is also analyzed. Issues and techniques related to simulation of noise in the time domain are described, and two prototypes fabricated in a 0.5-μm CMOS technology are used to investigate the accuracy of the theoretical predictions. Compared with the measured results, the calculated phase noise values of a 2-GHz ring oscillator and a 900-MHz relaxation oscillator at 5 MHz offset have an error of approximately 4 dB

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:31 ,  Issue: 3 )
RFIC Virtual Journal, IEEE