By Topic

Role of ionized nitrogen species in the optical and structural properties of GaInNAs/GaAs quantum wells grown by plasma-assisted molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Miguel-Sanchez, J. ; Institute for Systems Based on Optoelectronics and Microtechnology (ISOM) and Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, E.T.S.I. Telecomunicación, Ciudad Universitaria s/n, 28040 Madrid, Spain ; Guzman, A. ; Jahn, U. ; Trampert, A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We report on the impact of the nitrogen ion density on the structural and optical properties of GaInNAs quantum wells (QWs) grown by molecular beam epitaxy. The optical emission is strongly increased when the nitrogen ion density is reduced, as we found from photoluminescence experiments. Cathodoluminescence mappings of QWs grown under different ion densities are compared, showing a stronger modulation depth, and thus a higher structural disorder when a higher ion density was present during the growth. Atomic force microscopy measurements of equivalent epilayers showed that ions cause an important structural disorder of the layers. A nearly double root-mean-square roughness is observed when the density of ions is not reduced by external magnetic fields. Additionally, results of transmission electron microscopy measurements of buried GaInNAs QWs are presented, showing that lateral compositional fluctuations of In and N are suppressed when the QWs are protected from the ions. Finally, we find that QWs exposed to higher ion densities during the growth show deeper carrier localization levels and higher delocalization temperatures. These results provide clear evidence that the density of nitrogen ions present in the chamber during the epitaxial growth of GaInNAs QWs directly limits both the structural and optical properties.

Published in:

Journal of Applied Physics  (Volume:101 ,  Issue: 10 )