Cart (Loading....) | Create Account
Close category search window
 

Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kim, YoungKuk ; Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea ; Baeck, J.H. ; Cho, M.-H. ; Jeong, E.J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2357640 

The phase transitions of Ge2Sb2Te5 (GST) films after bombardment with 40 keV N2+ ions were investigated. Comparing the nitrogen incorporated GST films with a pure GST film, the suppression of a crystalline grain growth was more effective in the N2+ implanted GST film than in a nitrogen codeposited GST film, i.e., x-ray diffraction data showed that the intensities of the crystalline diffraction peaks were decreased and the full widths at half maximum were broader than that of a pure GST film. This suppression of crystallization owing to the incorporation of nitrogen drastically reduced the roughness of surface morphology and decreased the electrical conductivity of the crystalline film. A near edge x-ray absorption fine structure experiment and x-ray photoemission spectroscopy data demonstrated that the suppression of crystalline grain growth is due to the formation of Ge3N4 and interstitial N2 molecules. In N2+ implanted GST films, in particular, interstitial N2 molecules played a major role in the suppression of crystallization.

Published in:

Journal of Applied Physics  (Volume:100 ,  Issue: 8 )

Date of Publication:

Oct 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.