Cart (Loading....) | Create Account
Close category search window

Quantitative analysis of hydrogenated diamondlike carbon films by visible Raman spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Singha, Achintya ; Department of Physics, Indian Institute of Technology Kharagpur, Pin 721302, India ; Ghosh, Aditi ; Roy, Anushree ; Ray, Nihar Ranjan

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The correlations between properties of hydrogenated diamondlike carbon films and their Raman spectra have been investigated. The films are prepared by plasma deposition technique, keeping different hydrogen to methane ratios during the growth process. The hydrogen concentration, sp3 content, hardness, and optical Tauc gap of the materials have been estimated from a detailed analysis of their Raman spectra. We have also measured the same parameters of the films by using other commonly used techniques, such as sp3 content in films by x-ray photoelectron spectroscopy, their Tauc gap by ellipsometric measurements, and hardness by microhardness testing. The reasons for the mismatch between the characteristics of the films, as obtained by Raman measurements and by the above mentioned techniques, have been discussed. We emphasize on the importance of the visible Raman spectroscopy in reliably predicting the above key properties of diamondlike carbon films.

Published in:

Journal of Applied Physics  (Volume:100 ,  Issue: 4 )

Date of Publication:

Aug 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.