By Topic

Effect of particle size on the magnetic properties of core-shell structured nanoparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ceylan, Abdullah ; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 and Physics Engineering Department, Hacettepe University, Beytepe, Ankara 06800, Turkey ; Baker, C.C. ; Hasanain, S.K. ; Ismat Shah, S.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Effect of particle size on exchange bias observed in Fe/Fe oxide core/shell structured nanoparticles was investigated. Inert gas condensation was utilized for the synthesis of samples. Two sets of different particle size samples were prepared and the structural and magnetic properties were probed. It was found that the small particles show superparamagnetic behavior and exhibit high exchange bias field, 1574±25 Oe at 5 K, when field cooled in the presence of 2 T magnetic field. Structural analyses of the particles in correlation with the magnetic measurements show that the smaller particle size (6 nm Fe core, 1.5 nm Fe oxide shell) favors amorphous oxide shell structure, and this in turn causes high magnetocrystalline anisotropy and enhanced exchange bias. Furthermore, we have also observed a vertical shift of the hysteresis loop related to the pinned spins at the ferromagnetic/antiferromagnetic (AFM) interface of the small particles. Decreased core size, high AFM anisotropy, and pinned spins observed from the small size particles support the domain wall model of the exchange bias.

Published in:

Journal of Applied Physics  (Volume:100 ,  Issue: 3 )