By Topic

Structure and grain growth of TiO2 nanoparticles investigated by electron and x-ray diffractions and 181Ta perturbed angular correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Schlabach, S. ; Institut für Materialforschung III, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany ; Szabo, D.V. ; Vollath, D. ; de la Presa, P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Bare and coated TiO2 nanoparticles with particle sizes d≪5 nm have been synthesized in a microwave plasma process. Structural properties of these materials have been investigated by transmission electron microscopy, x-ray diffraction, and perturbed angular correlation (PAC) measurements of the electric quadrupole interaction (QI) at the probe nucleus 181Ta on the metal site of TiO2 at temperatures 290≤T≤1450 K. The electron diffraction of the uncoated nanoparticles in the as-synthesized state reflects long range order in the Ti sublattice. Depending on the particles size, either the anatase or the rutile phase of TiO2 was found. Anatase appears to be the stable form of nanocrystalline TiO2 below d∼10 nm. The PAC spectra of these nanocrystalline oxides are characterized by a broad distribution of strong quadrupole interactions, indicating a strongly disordered oxygen environment of the metal sites. Upon annealing, the grain size grows from d≪5 nm after synthesis to d≫100 nm after 1300 K. PAC spectra taken in the same temperature range show that with increasing temperature, the initially disordered state transforms to well-ordered rutile TiO2. The data suggest a critical grain size of d∼10 nm for the onset of the ordering process. The spectra of coarse-grained Ti- O2 are reached at a particle size d≥30 nm. In n-TiO2 coated with Al2O3 and ZrO2 both the cores and the coatings were found to grow with increasing temperature; the cores of the coated particles, however, grow much less than those of the noncoated particles. The PAC method was used to investigate the QI in both TiO2 cores and in the ZrO2 coating of n-TiO2/ZrO2 at different temperatures. These data suggest that although the coated particles grow with temperature, the ordering process is obstructed, possibly by a solid state reaction between the TiO2 kernels and the coatings.

Published in:

Journal of Applied Physics  (Volume:100 ,  Issue: 2 )