By Topic

High throughput screening of ferroelectric thin film libraries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schroeter, Christian ; Siemens AG, Corporate Technology, D-81739 Muenchen, Germany, and Institute of Applied Photophysics, Technische Universitaet Dresden, D-01062 Dresden, Germany ; Wessler, Berit ; Schoenecker, Andreas ; Keitel, U.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

High throughput methods can significantly speed up the search for advanced materials in a multidimensional configuration space, hence keeping innovation cycles short. In the search for improved materials, high throughput methods are wanted to optimize composition and processing of promising systems, and to find candidate compounds. Such a method is described here which is applicable to the development of ferroelectric thin films. Libraries with samples of varying chemical composition were produced via the sol-gel route on structured and metallized silicon wafers. To determine the permittivity of the films, automated measurements of film thickness and capacity were established. Furthermore, ferroelectric hysterisis measurements were performed on samples with a particularly high permittivity. This high throughput route, which allows for synthesis and characterization of over hundred samples per day, was proved and tested by means of lead zirconate titanate as a standard material. It was possible to obtain films with remarkable high permittivity and low coercive field at optimal lead zirconate/lead titanate ratio and by compensating for lead loss during processing by finding the optimal lead excess added to the precursor solutions.

Published in:

Journal of Applied Physics  (Volume:100 ,  Issue: 11 )