By Topic

Photoreflectance investigations of quantum well intermixing processes in compressively strained InGaAsP/InGaAsP quantum well laser structures emitting at 1.55 μm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Podhorodecki, A. ; Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland ; Andrzejewski, J. ; Kudrawiec, R. ; Misiewicz, J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2209787 

We have investigated the effects of interdiffusion and its technological parameters on the subband structure in compressively strained InGaAsP quantum wells (QWs) using photoreflectance and photoluminescence techniques. p-i-n laser structures with three QWs were grown by gas source molecular beam epitaxy and capped with dielectric films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition and annealed using a rapid thermal annealing process. A numerical real-time wave-packet propagation method including static electric field, strain in the wells and barriers, and error function interface diffusion modeling is used to calculate the transition energies for the diffused QWs. It has been shown that the shift of the energy levels due to the interdiffusion related changes of the well confinement potential profile is a consequence of two competing processes: a change of the well width and an effective increase of the band gap energy resulting in a net blueshift of all optical transitions. Moreover, it has been found that quantum well intermixing does not significantly influence the built-in electric fields distribution.

Published in:

Journal of Applied Physics  (Volume:100 ,  Issue: 1 )