By Topic

Estimating performance indexes of a baggage handling system using metamodels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khosravi, A. ; Centre for Intell. Syst. Res., Deakin Univ., Melbourne, VIC ; Nahavandi, S. ; Creighton, D.

In this study, we develop some deterministic metamodels to quickly and precisely predict the future of a technically complex system. The underlying system is essentially a stochastic, discrete event simulation model of a big baggage handling system. The highly detailed simulation model of this is used for conducting some experiments and logging data which are then used for training artificial neural network metamodels. Demonstrated results show that the developed metamodels are well able to predict different performance measures related to the travel time of bags within this system. In contrast to the simulation models which are computationally expensive and expertise extensive to be developed, run, and maintained, the artificial neural network metamodels could serve as real time decision aiding tools which are considerably fast, precise, simple to use, and reliable.

Published in:

Industrial Technology, 2009. ICIT 2009. IEEE International Conference on

Date of Conference:

10-13 Feb. 2009