By Topic

A Modular Fuel Cell, Modular DC–DC Converter Concept for High Performance and Enhanced Reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Palma, L. ; Univ. de Concepcion, Concepcion ; Enjeti, P.N.

Fuel cell stacks produce a DC output with a 2:1 variation in output voltage from no-load to full-load. The output voltage of each fuel cell is about 0.4 V at full-load, and several of them are connected in series to construct a stack. An example 100 V fuel cell stack consists of 250 cells in series and to produce 300 V at full-load requires 750 cells stacked in series. Since fuel cells actively convert the supplied fuel to electricity, each cell requires proper distribution of fuel, humidification, coupled with water/thermal management needs. With this added complexity, stacking more cells in series decreases the reliability of the system. For example, in the presence of bad or malperforming cell/cells in a stack, uneven heating coupled with variations in cell voltages may occur. Continuous operation under these conditions may not be possible or the overall stack output power is severely limited. In this paper, a modular fuel cell powered by a modular DC-DC converter is proposed. The proposed concept electrically divides the fuel cell stack into various sections, each powered by a DC-DC converter. The proposed modular fuel cell powered by modular DC-DC converter eliminates many of these disadvantages, resulting in a fault tolerant system. A design example is presented for a 150-W, three-section fuel cell stack and DC-DC converter topology. Experimental results obtained on a 150-W, three-section proton exchange membrane (PEM) fuel cell stack powered by a modular DC-DC converter are discussed.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 6 )