By Topic

Demonstration of anisotropic composites with tuneable microwave permeability manufactured from ferromagnetic thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Acher, O. ; DETN, CEA, Centre d''Etudes de Bruyeres-le-Chatel, France ; Le Gourrierec, P. ; Perrin, G. ; Baclet, P.
more authors

Recently, we presented the microwave properties of laminated insulator ferromagnetic on the edge (LIFE) composites. For the fundamental mode propagating in a coaxial line, they exhibit large permeability and low permittivity. In this paper we investigate the properties of LIFE composites in the 0.1 to 18 GHz range when a static magnetic field is applied along the propagation direction. We show that the evolution of the resonance frequency with the external field can be described by conventional gyromagnetic resonance models. The effect of demagnetizing fields is analyzed. In particular, it is shown that LIFE materials exhibit comparatively low demagnetizing effects and large permeabilities. The evolution of the resonance linewidth with the external field is investigated. LIFE material may be used for a variety of microwave applications in a coaxial line or in a guide. In particular, we demonstrate a tuneable coaxial absorbing termination with peak attenuation frequency tuneable from 1.7 to 18 GHz with more than -15 dB maximum attenuation, and a switchable termination that can be either reflective or absorbing. The operation of a field-driven variable attenuator is also presented

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:44 ,  Issue: 5 )