By Topic

An Improved Hierarchical Markovian Target Tracking (I-HMTT) Algorithm for Energy Efficient Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yasami, K. ; Dept. of Electr. Eng., Iran Univ. of Sci. & Technol., Tehran ; Ziyadi, M. ; Abolhassani, B.

In this paper, we consider a target-tracking sensor network and improve its energy awareness through predicting a target trajectory and decreasing sampling rate of sensors while maintaining an acceptable tracking accuracy. The tracking problem is formulated as a hierarchical Markov decision process (MDP) and is solved through neurodynamic programming. Though this is not new, improvements in performance of the network are achieved by use of a reinforcement learning algorithm to solve the MDP that converges faster than the preceding used methods, since the energy efficiency and speed of convergence of the solution are tightly coupled. Simulation results show the effectiveness of our algorithm against other known target tracking algorithms.

Published in:

Communication Networks and Services Research Conference, 2009. CNSR '09. Seventh Annual

Date of Conference:

11-13 May 2009