By Topic

Fuzzy modeling and analytic hierarchy processing-means to quantify risk levels associated with occupational injuries. II. The development of a fuzzy rule-based model for the prediction of injury

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. McCauley-Bell ; Dept. of Ind. Eng. & Mange. Syst., Central Florida Univ., Orlando, FL, USA ; A. B. Badiru

This paper presents the second phase in a two-part research project to develop a fuzzy rule-based expert system for predicting occupational injuries of the forearm and hand. Analytic hierarchy processing (AHP) is used to assign relative weights to the identified risk factors. A fuzzy rule base is constructed with all of the potential combinations for the given factors. The input parameters are linguistic variables obtained in the first part of the research. These inputs are fuzzified and defuzzified to provide two system outputs: a linguistic value and a numeric value as a prediction of injury. The system provides linguistic risk levels as well as quantified risks in assessing the overall risk of injury. The system evaluation was conducted resulting in calculations for Type I and Type II errors. The contributions and limitations of the system are discussed

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:4 ,  Issue: 2 )