By Topic

A new hierarchical particle filtering for markerless human motion capture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuanqiang Dong ; Electr. & Comput. Eng. Dept., Univ. of Missouri, Columbia, MO ; Desouza, G.N.

Particle filtering (also known as the condensation algorithm) has been widely applied to model-based human motion capture. However, the number of particles required for the algorithm to work increases exponentially with the dimensionality of the model. In order to alleviate this computational explosion, we propose a two-level hierarchical framework. At the coarse level, the configuration space is discretized into large partitions and a suboptimal estimation is calculated. At the fine level, new particles in the vicinity of the suboptimal estimation are created using a more likely and narrow configuration space, allowing the original coarse estimate to be refined more efficiently. Our preliminary results demonstrates that this hierarchical framework achieves accurate estimation of the human posture with significantly reduction in the number of particles.

Published in:

Computational Intelligence for Visual Intelligence, 2009. CIVI '09. IEEE Workshop on

Date of Conference:

March 30 2009-April 2 2009