By Topic

Generalized neuron based secure media access control protocol for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kulkarni, R.V. ; Real-Time Power & Intell. Syst. Lab., Missouri Univ. of Sci. & Technol., Rolla, MO ; Venayagamoorthy, G.K. ; Thakur, A.V. ; Madria, S.K.

Security plays a pivotal role in most applications of wireless sensor networks. It is common to find inadequately secure networks confined only to controlled environments. The issue of security in wireless sensor networks is a hot research topic for over a decade. This paper presents a compact generalized neuron (GN) based medium access protocol that renders a CSMA/CD network secure against denial-of-service attacks launched by adversaries. The GN enhances the security by constantly monitoring multiple parameters that reflect the possibility that an attack is launched by an adversary. Particle swarm optimization, a popular bio-inspired evolutionary-like optimization algorithm is used for training the GN. The wireless sensor network is simulated using Vanderbilt Prowler, a probabilistic wireless network simulator. Simulation results show that the choice of threshold suspicion parameter impacts on the tradeoff between network effectiveness and lifetime.

Published in:

Computational intelligence in miulti-criteria decision-making, 2009. mcdm '09. ieee symposium on

Date of Conference:

March 30 2009-April 2 2009