By Topic

A novel data clustering algorithm based on electrostatic field concepts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khandani, M.K. ; Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC ; Saeedi, P. ; Fallah, Y.P. ; Khandani, M.K.

In this paper a new method is presented for finding data clusters centroids. This method, called Force, is based on the concepts of electrostatic fields in which the centroids are positioned at locations where an electrostatic equilibrium or balance could be achieved. After determining the centroids locations, criteria such as minimum distance to centroid can be used for clustering data points. The performance of the proposed method is compared against the k-means algorithm through simulation experiments. Experimental results show that the Force algorithm does not suffer from problems associated with k-means, such as sensitivity to noise and initial selection of centroids, and tendency to converge to poor local optimum. In fact, we show that this algorithm always converges to global equilibrium points, regardless of the initial guesses, and even in presence of high levels of noise.

Published in:

Computational Intelligence and Data Mining, 2009. CIDM '09. IEEE Symposium on

Date of Conference:

March 30 2009-April 2 2009