By Topic

Inter-modality registration of NMRi and histological section images using neural networks regression in Gabor feature space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bollenbeck, F. ; Dept. of Biosystems Eng., Fraunhofer IFF, Magdeburg ; Pielot, R. ; Weier, D. ; Weschke, W.
more authors

Image registration is amongst the most prominent problems in image processing and computer vision. Particularly in biomedical applications, automated alignment of image data from different imaging modalities has received great attention, delivering a high value added for analysis and diagnosis by integrating spatial information of two or more assays. In this context, the use of entropy based mutual information between images has been widely propagated to capture the relation between differential intensity distributions. In this work we address the problem of matching two different intensity distributions in a supervised learning scenario: We approximate a function relating both intensity distributions using a regression neural network predicting intensity values of one modality to the other, thereby allowing direct intensity difference registration. Predictions are based on a Gabor space representation of the input image, in order to capture local image structures. In experiments we show that the approach is i) able to learn a function to predict intensity values and ii) the predictions can be used to correctly register images by direct intensity differences minimization. The latter has the advantage of being computationally appealing and more stable concerning the optimization framework, which we exploit in registering histological section and NMRi data of plant specimen.

Published in:

Computational Intelligence for Image Processing, 2009. CIIP '09. IEEE Symposium on

Date of Conference:

March 30 2009-April 2 2009