Cart (Loading....) | Create Account
Close category search window

Negative ion density in inductively coupled chlorine plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hebner, G.A. ; Sandia National Laboratories, Albuquerque, New Mexico 87185‐1423

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Laser photodetachment spectroscopy has been used to infer the density of chlorine negative ions in an inductively coupled chlorine plasma. Time dependent, excess electron density produced by photodetaching electrons from Cl- was detected by a microwave interferometer operating at 80 GHz. By focusing the microwave probe beam through the center of the discharge, negative ion density measurements could be performed in a small, 1.5 cm3, volume. As the rf power into the plasma increased from 155 to 340 W at 20 mTorr, the Cl- density in the center of the bulk plasma increased from 3.4 to 5.2×1011 cm-3. As the pressure was increased from 15 to 50 mTorr at 240 W, the Cl- density increased from 3.5 to 5×1011 cm3. Over this parameter space, the negative ion density equaled the electron density to within a factor of 2. The negative ion radial distribution was relatively constant, with a 20% decrease in the center of the plasma for some operating conditions. When the surface of the bias electrode was changed from stainless steel to silicon, the electron density remained constant but the Cl- density decreased by a factor of 2 to 3. © 1996 American Vacuum Society

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:14 ,  Issue: 4 )

Date of Publication:

Jul 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.